DOI: 10.1002/ange.201406863

Differential Reduction of CO₂ by Molybdenum and Vanadium Nitrogenases**

Johannes G. Rebelein, Yilin Hu,* and Markus W. Ribbe*

Abstract: The molybdenum and vanadium nitrogenases are two homologous enzymes with distinct structural and catalytic features. Previously, it was demonstrated that the V nitrogenase was nearly 700 times more active than its Mo counterpart in reducing CO to hydrocarbons. Herein, a similar discrepancy between the two nitrogenases in the reduction of CO2 is reported, with the V nitrogenase being capable of reducing CO_2 to CO, CD_4 , C_2D_4 , and C_2D_6 , and its Mo counterpart only capable of reducing CO₂ to CO. Furthermore, it is shown that the V nitrogenase may direct the formation of CD₄ in part via CO_2 -derived CO, but that it does not catalyze the formation of C_2D_4 and C_2D_6 along this route. The exciting observation of a V nitrogenase-catalyzed C-C coupling with CO₂ as the origin of the building blocks adds another interesting reaction to the catalytic repertoire of this unique enzyme system. The differential activities of the V and Mo nitrogenases in CO₂ reduction provide an important framework for systematic investigations of this reaction in the future.

Nitrogenases are a family of complex metalloenzymes that catalyze a key step in the global nitrogen cycle: the reduction of atmospheric nitrogen (N₂) to a bio-accessible form, ammonia (NH_3) . [1-4] Apart from N_2 , nitrogenases are also capable of reducing alternative substrates, such as acetylene (C₂H₂) and carbon monoxide (CO), thereby displaying a unique versatility in processing small carbon-containing molecules.^[1,5] The molybdenum and vanadium nitrogenases are two homologous members of this enzyme family, sharing a good degree of homology in primary sequence and cluster composition.^[5,6] Both enzymes are homologous binary systems that consist of 1) a reductase component (nifH- or vnfHencoded Fe protein), which contains one subunit-bridging [Fe₄S₄] cluster and one ATP-binding site per subunit; and 2) a catalytic component (nifDK-encoded MoFe or vnfDGKencoded VFe protein), which contains a P-cluster at the α/β subunit interface and a cofactor (FeMoco or FeVco) within each α -subunit (Figure 1 A). Moreover, both enzymes use the

α P-cluster ("P-cluster" FeMoco FeVco FeMoco P-cluster MoFe protein VFe protein (nifDK) (vnfDGK) В P-cluster P-cluster C FeMoco FeVco

Figure 1. Comparison between the Mo and V nitrogenases. Schematic representations of the catalytic components (A) and structural models of the P-clusters (B) and cofactors (C) in the Mo (left) and V (right) nitrogenases. Carbon, gray; iron, orange; molybdenum, cyan; oxygen, red; sulfur, yellow; vanadium, magenta.

[*] J. G. Rebelein, Prof. Dr. Y. Hu Department of Molecular Biology and Biochemistry University of California, Irvine (USA) E-mail: yilinh@uci.edu

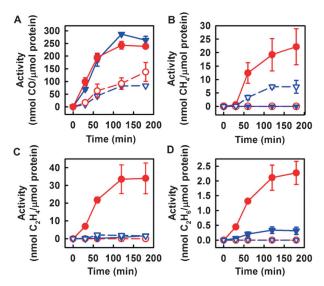
Prof. Dr. M. W. Ribbe

Department of Molecular Biology and Biochemistry, and Department of Chemistry, University of California, Irvine

Irvine, CA 92697-3900 (USA) E-mail: mribbe@uci.edu

[**] This work was supported by an NIH grant (GM-67626) to M.W.R. Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201406863.

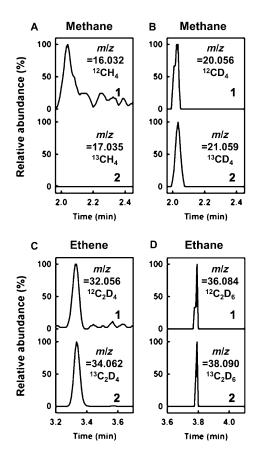
same mode of action during catalysis, which involves the formation of a functional complex between the two component proteins, [7,8] the ATP-dependent transfer of electrons from the [Fe₄S₄] cluster of the reductase component to the cofactor of the catalytic component via the P-cluster, and the eventual reduction of substrates at the cofactor site upon accumulation of a sufficient amount of electrons (Figure 1 A).


Despite their homology in structure and function, the two nitrogenases are clearly distinct from each other with regard to their associated metalloclusters. The P-cluster of the Mo nitrogenase assumes a "standard" [Fe₈S₇] structure, whereas the P-cluster of the V nitrogenase consists of a pair

11727

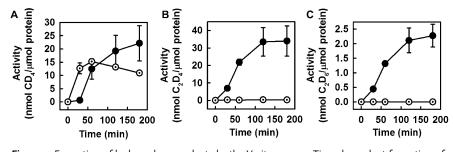
of [Fe₄S₄]-like clusters (Figure 1B).^[5,7-9] Likewise, despite a striking homology in structure, the cofactors of the Mo and V nitrogenases are distinguishable not only by the incorporated heterometals, but also by their electronic properties (Figure 1 C).[10] The differences between the metal clusters in the Mo and V nitrogenases underline the differences in the catalytic behavior of these homologous enzymes. It has been documented that the V nitrogenase is less efficient than its Mo counterpart in terms of N_2 reduction; yet, this nitrogenase can reduce C₂H₂ to ethane (C₂H₆), a catalytic activity not observed in the case of the Mo nitrogenase. [6,8] Perhaps the biggest discrepancy between the catalytic properties of the two nitrogenases is their ability to reduce CO to hydrocarbons, with the V nitrogenase showing an overall activity that is nearly 700 times higher than that of its Mo counterpart.[11,12] This observation has prompted us to conduct a comparative study with the Mo and V nitrogenases to address 1) whether the two nitrogenases can also reduce CO₂ to hydrocarbons, and 2) whether they have the same discrepancy in their activities to generate hydrocarbons from this substrate.

Consistent with an earlier report, [13] the Mo nitrogenase can reduce CO₂ to CO (Figure 2A, triangles). Like its Mo counterpart, the V nitrogenase can also catalyze the reduction of CO₂ to CO (Figure 2A, circles) in an ATP-dependent reaction (Figure S1) using dithionite (20 mm) at pH 8.5. The two nitrogenases displayed comparable efficiencies in H₂O-based reactions, forming approximately the same amount of CO from CO₂ over a time period of 180 minutes (Figure 2A). Moreover, both nitrogenases exhibited roughly the same increase in activity for the formation of CO from CO₂ upon substitution of D₂O for H₂O, reaching a maximum increase of activity at 120 minutes (Figure 2A). Apart from CO, CH₄, which is a further reduced C₁ product, could be detected in reaction mixtures in the presence of the Mo and


Figure 2. Product formation by the Mo and V nitrogenases in the presence of CO₂. Time-dependent formation of CO (A), CH₄ (B), C₂H₄ (C), and C₂H₆ (D) by the Mo nitrogenase in H₂O (∇ , −−−) or D₂O (∇ , −−−) and by the V nitrogenase in H₂O (\bigcirc , −−−) or D₂O (\bigcirc , −−−). Data are presented as mean ± SD (N = 3) after background correction.

V nitrogenases when CO_2 was supplied as a substrate (Figure 2B). However, when H_2O was replaced by D_2O , the activity of CH_4 formation by the V nitrogenase increased from 0 to a maximum of 22.2 nmol per μ mol of protein (Figure 2B, • vs. •), whereas the activity of CH_4 formation by the Mo nitrogenase decreased from a maximum of 7.3 nmol per μ mol of protein to 0 (Figure 2B, • vs. ∇). Such a disparate D_2O effect implies a difference in the routes to CH_4 formation taken by the two nitrogenases.

The difference between the V and Mo nitrogenases in CO₂ reduction is further illustrated by the difference in their abilities to use CO₂ as a substrate to form C-C bonds. In the presence of H₂O, little or no C₂ product was detected during CO₂ reduction by either the Mo or the V nitrogenase (Figure 2 C and D, ∇ and \circ). In the presence of D_2O , however, C_2D_4 (Figure 2C, \bullet) and C_2D_6 (Figure 2D, \circ) were detected as products of CO₂ reduction by the V nitrogenase, whereas these C₂ products were hardly detectable in the same reaction catalyzed by the Mo nitrogenase (Figure 2 C and D, ▼). Thus, as was observed in the case of CH₄ formation, there was a clear increase in the activities of C₂D₄ and C₂D₆ formation by the V nitrogenase upon substitution of D₂O for H₂O, whereas these activities remained marginal in the reaction catalyzed by the Monitrogenase following such a substitution. Moreover, like the formation of CH₄, the formation of C₂ products by the V nitrogenase was ATPdependent, as C₂D₄ and C₂D₆ could not be detected in the absence of ATP (Supporting Information, Figure S1).


GC-MS analysis supplied further evidence for the differences between the Mo and V nitrogenases in hydrocarbon formation from CO₂. When ¹²CO₂ was replaced by ¹³CO₂, ¹³CD₄ could be detected in the V nitrogenase-catalyzed reaction in D₂O (Figure 3B); however, ¹³CH₄ was absent from the Monitrogenase-catalyzed reaction in H₂O (Figure 3 A). This observation confirmed CO₂ as the carbon source for CD₄ generated by the V nitrogenase while suggesting a different carbon source for the same C₁ product generated by the Mo nitrogenase. Aside from CD₄, CO₂ also gave rise to the C₂ products in the V nitrogenase-catalyzed reaction, as ¹³C₂D₄ (Figure 3 C) and ¹³C₂D₆ (Figure 3 D) could be detected in the presence of D₂O upon substitution of ¹³CO₂ for ¹²CO₂. Together, the GC-MS and activity data highlight the difference between the reactions of CO₂ reduction by the V and Mo nitrogenases, showing the ability of the V nitrogenase to form C₁ and C₂ hydrocarbons along with CO and the inability of its Mo counterpart to generate products other than CO under these experimental conditions. Given the previous observation that the V nitrogenase can reduce CO to hydrocarbons, [11,12] the co-production of CO and hydrocarbons by this enzyme as products of CO2 reduction raises the relevant question of whether it is the CO₂-derived CO that gives rise to the hydrocarbon products.

This question can be addressed by directly supplying CO to the V nitrogenase in a concentration simulating the maximum concentration of CO achieved in the "equilibrated state" of CO_2 reduction by this enzyme (see Figure 2 A) and monitoring the formation of the C_1 and C_2 hydrocarbons in D_2O over a time period of 180 minutes. Interestingly, the CO-based formation of CD_4 by the V nitrogenase (Figure 4 A, \bigcirc)

Figure 3. GC-MS analyses of the hydrocarbon products formed by the Mo and V nitrogenases. The products were generated by the Mo nitrogenase in H_2O (A) or by the V nitrogenase in D_2O (B-D) when $^{12}CO_2$ (1) or $^{13}CO_2$ (2) was supplied. The mass-to-charge (m/z) ratios at which the products were traced are indicated.

displayed an activity increase of 12.6 nmol per μ mol of protein between 0 and 30 minutes, whereas the CO₂-based formation of CH₄ exhibited a nearly identical activity increase of 11.8 nmol per μ mol of protein between 30 and 60 minutes after an initial lag phase between 0 and 30 minutes (Figure 4A, •). This observation suggests the possibility for the V nitrogenase to direct the formation of C₁ hydrocarbons via CO, as the 30-minute delay could be correlated with a need for the enzyme to accumulate a sufficient amount of CO₂-derived CO to initiate further reduction of CO to CD₄. On the

Figure 4. Formation of hydrocarbon products by the V nitrogenase. Time-dependent formation of CD₄ (A), C₂D₄ (B), and C₂D₆ (C) from CO₂ (\bullet) or CO (\circ) by the V nitrogenase in D₂O. CO was added at a concentration of 110 ppm in assays involving the direct formation of products from CO, which was equivalent to the maximum concentration of CO that could be generated from CO₂ reduction by the V nitrogenase (see also Figure 2). Data are presented as mean \pm SD (N=3) after background correction.

other hand, the time courses of CD_4 formation from CO (Figure 4A, \odot) and CO_2 (Figure 4A, \bullet) diverged beyond 60 minutes, with a gradual decrease in activity for the former and a gradual increase in activity for the latter. The difference between the two time courses (Figure S2A) could represent the portion of CD_4 that is generated independently from CO_2 -derived CO. Consistent with this hypothesis, there is a notable difference between the CO- and CO_2 -based reactions in the percentage activity of CH_4 formation in H_2O relative to that in D_2O (Figure S3A), with the CO-based reaction favoring the formation of CH_4 in H_2O over that in D_2O (42%) considerably more than the CO_2 -based reaction (0%). It is therefore possible that the V nitrogenase generates CH_4 both from CO_2 -derived CO and from CO_2 and/or other CO_2 -derived intermediate(s).

Unlike CD_4 , both C_2D_4 and C_2D_6 seem to be produced by the V nitrogenase along a CO-independent route, as no C2 products could be detected (Figure 4B and C, O) upon direct addition of the same amount of CO as produced by the V nitrogenase through CO₂ reduction in the equilibrated state (see Figure 2A). This observation suggests that instead of CO, CO₂ and/or other CO₂-derived intermediates are responsible for the formation of C2 hydrocarbon products by the V nitrogenase. Indeed, as was observed in the case of CH₄ formation, there is a significant difference between the COand CO₂-based reactions in the percentage activity of C₂H₄ (Figure S3B) or C₂H₆ (Figure S3C) formation in H₂O relative to that in D₂O, with the CO-based reaction favoring the formation of C₂ products in H₂O over that in D₂O (C₂H₄, 92%; C₂H₆, 65%) considerably more than the CO₂-based reaction (C₂H₄, 0.7 %; C₂H₆, 0 %). Such a disparate deuterium effect on the CO- and CO₂-based reactions further implies that the V nitrogenase directs the formation of C2 hydrocarbons via CO₂ or other CO₂-derived intermediate(s). The lack of contribution of CO to the formation of C2 hydrocarbons in this case could be explained by an insufficient CO concentration achieved by the reduction of CO₂, which does not allow the formation of C-C bonds. More excitingly, it defines the ability of the V nitrogenase to directly use CO₂ as a substrate for the initial C-C coupling and the subsequent carbon chain extension.

The ability of certain variants of the Mo nitrogenase to reduce CO₂ to CH₄ was reported recently.^[14] To our surprise, contrary to what has been described for these variants of the

Mo nitrogenase, the wild-type Mo nitrogenase cannot reduce CO₂ to CH₄; rather, it uses an unknown carbon source to generate CH₄ in the presence of CO₂ and H₂O. Considering the presence of an interstitial carbide^[15-18] and a homocitrate moiety in the FeMoco,^[15,17] it can be postulated that in H₂O, CO₂ or its derivative somehow promotes the release of the central carbide ligand or carbon-containing groups of the homocitrate in the form of CH₄. Alternatively, the side-chain groups of certain amino acids at the active site of the Mo ni-

11729

trogenase may also serve as a carbon source for the production of CH₄ in the presence of CO₂. Remarkably, despite the unclear nature of the carbon source, the formation of CH₄ by the Mo nitrogenase is ATP-dependent and requires the presence of both component proteins; moreover, it only occurs in the presence of CO₂ and H₂O (Figure S4). This observation points to a redox-dependent mechanism for this reaction, as the requirement for ATP and both components is specifically associated with the transfer of electrons through the enzyme system, which may permit the initial binding and processing of CO₂ or its derivative in H₂O and the subsequent interaction between CO₂ or CO₂-derived intermediate(s) and the carbon species that eventually gives rise to CH₄. Given the overall homology between the Mo and V nitrogenases, one would expect the V nitrogenase to catalyze the same unspecific formation of CH4 from a different carbon source than CO₂ as its Mo counterpart. Although this possibility cannot be ruled out, our current data (see Figure 3 A and B) clearly demonstrate that the CH₄ formed by the V nitrogenase is derived, at least in part, from CO₂. Further investigations of the origin of the different routes taken by the two nitrogenases to CH₄ formation could be informative, particularly with regard to the initial binding and processing of CO₂ by this enzyme system.

Based on the hydrocarbon products identified thus far in the gas phase, the V nitrogenase generates carbon-containing compounds at a slow rate from CO₂ reduction, forming 0.3 mol CO, 0.02 mol CH₄, 0.04 mol C₂H₄, and 0.002 mol C₂H₆ per mol of protein. Nevertheless, the ability of the V nitrogenase to form hydrocarbons, particularly the C2 products, from CO₂, is a most remarkable finding of the current study, because it adds another exciting reaction to the catalytic repertoire of this unique enzyme system. As was observed in the case of CO reduction, [12] the V nitrogenase is superior to its wild-type Mo counterpart in generating hydrocarbons from CO₂. The disparate CO-reducing activities of the V and Mo nitrogenases were compared with the differential capacities of synthetic V and Mo compounds to reductively couple two CO moieties into functionalized acetylene ligands.[19] An alteration of the CO-reducing activities was reported for the MoFe protein variants that contained modified residues at the active site. [20] By analogy, the disparate CO2 reducing activities of the two nitrogenases could also stem from the structural/redox differences between FeVco and FeMoco, as well as the protein environments surrounding the two cofactors (see Figure 1). Furthermore, the different structural/redox properties of the P-clusters in the two nitrogenases could further contribute to the differences between their abilities to reduce CO₂ (see Figure 1). In fact, the ability of the nitrogenases to generate hydrocarbons from CO₂ was first described for a cofactor-deficient variant of the MoFe protein^[21] and attributed to its unique P-cluster, which contains a $[Fe_4S_4]$ -like cluster pair instead of the normal [Fe₈S₇] P-cluster. [22] Interestingly, the P-cluster of the V nitrogenase also consists of a pair of [Fe₄S₄]-like clusters^[5,8,9] and could, in principle, serve as a site for CO₂ reduction on its own; only in the case of the holo form of the V nitrogenase, the presence of the cofactor "downstream" of the P-cluster along the electron transfer pathway (see Figure 1) may effectively "funnel" the electrons towards the cofactor site and only allow a small amount of CO₂ reduction at the P-cluster site. The possibility of two reactive sites (i.e., P-cluster and cofactor) and different reaction routes (i.e., via CO or other CO₂-derived intermediates) for CO₂ reduction makes it a challenging task to elucidate the mechanistic details of this reaction. Nevertheless, the work reported herein provides an important framework for systematic investigations of this unique reaction in the future, which will hopefully lead to the development of nitrogenase-based strategies to recycle the greenhouse gas CO₂ into useful carbon fuel.

Received: July 3, 2014 Revised: August 4, 2014

Published online: September 9, 2014

Keywords: carbon dioxide \cdot carbon monoxide \cdot C-C coupling \cdot hydrocarbons \cdot nitrogenase

- [1] B. K. Burgess, D. J. Lowe, Chem. Rev. 1996, 96, 2983 3012.
- [2] D. C. Rees, A. F. Tezcan, C. A. Haynes, M. Y. Walton, S. Andrade, O. Einsle, J. B. Howard, *Philos. Trans. R. Soc. A* 2005, 363, 971–984.
- [3] M. W. Ribbe, Y. Hu, K. O. Hodgson, B. Hedman, *Chem. Rev.* 2014, 114, 4063 – 4080.
- [4] B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, L. C. Seefeldt, Chem. Rev. 2014, 114, 4041 4062.
- [5] Y. Hu, C. C. Lee, M. W. Ribbe, Dalton Trans. 2012, 41, 1118– 1127.
- [6] R. R. Eady, Chem. Rev. 1996, 96, 3013-3030.
- [7] H. Schindelin, C. Kisker, J. L. Schlessman, J. B. Howard, D. C. Rees, *Nature* **1997**, *387*, 370–376.
- [8] C. C. Lee, Y. Hu, M. W. Ribbe, Proc. Natl. Acad. Sci. USA 2009, 106, 9209 – 9214.
- [9] Y. Hu, M. C. Corbett, A. W. Fay, J. A. Webber, B. Hedman, K. O. Hodgson, M. W. Ribbe, *Proc. Natl. Acad. Sci. USA* 2005, 102, 13825 – 13830.
- [10] A. W. Fay, M. A. Blank, C. C. Lee, Y. Hu, K. O. Hodgson, B. Hedman, M. W. Ribbe, J. Am. Chem. Soc. 2010, 132, 12612– 12618
- [11] C. C. Lee, Y. Hu, M. W. Ribbe, Science 2010, 329, 642.
- [12] Y. Hu, C. C. Lee, M. W. Ribbe, Science 2011, 333, 753-755.
- [13] L. C. Seefeldt, M. E. Rasche, S. A. Ensign, *Biochemistry* 1995, 34, 5382-5389.
- [14] Z. Y. Yang, V. R. Moure, D. R. Dean, L. C. Seefeldt, Proc. Natl. Acad. Sci. USA 2012, 109, 19644–19648.
- [15] O. Einsle, F. A. Tezcan, S. L. Andrade, B. Schmid, M. Yoshida, J. B. Howard, D. C. Rees, *Science* 2002, 297, 1696–1700.
- [16] J. A. Wiig, Y. Hu, C. C. Lee, M. W. Ribbe, Science 2012, 337, 1672–1675.
- [17] T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. Andrade, E. Schleicher, S. Weber, D. C. Rees, O. Einsle, *Science* 2011, 334, 940.
- [18] K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F. Neese, U. Bergmann, S. DeBeer, *Science* 2011, 334, 974–977.
- [19] E. M. Carnahan, J. D. Protasiewicz, S. J. Lippard, Acc. Chem. Res. 1993, 26, 90–97.
- [20] Z. Y. Yang, D. R. Dean, L. C. Seefeldt, J. Biol. Chem. 2011, 286, 19417–19421.
- [21] M. C. Corbett, Y. Hu, F. Naderi, M. W. Ribbe, B. Hedman, K. O. Hodgson, J. Biol. Chem. 2004, 279, 28276–28282.
- [22] C. C. Lee, Y. Hu, M. W. Ribbe, Proc. Natl. Acad. Sci. USA 2012, 109, 6922 – 6926.